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Abstract

Sorting is an algorithm used to arrange all elements of a list in an order. It can be arranged in increasing as well as decreasing order. Several sorting 
algorithms with various time and space complexities exist already due to the very important applications of  sorting .

This  paper proposes an algorithm which is a modification of counting sort and bucket sort to produce a new stable sorting algorithm having better space 
complexity than counting sort without affecting it's time complexity and better worst case time complexity than generic bucket sort. It also has better time 
complexity than any comparison based sorting algorithm as it is not bound by O(n*log(n)) .It's best case complexity is O(n) whereas worst case 
complexity is O(m+n). The space complexity is (√mn +  n ). Hence it is concluded from experimental and theoretical observations that this algorithm can 

replace counting sort and is also better than the generic bucket sort implementation .
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INTRODUCTION

A comparison sort is a type of sorting algorithm that 
only reads the list elements through a single abstract 
comparison operation (often a "less than or equal to" 
operator) that determines which of two elements should 
occur first in the final sorted list. [1]

There are fundamental limits on the performance of 
comparison sorts. A comparison sort must have a lower 
bound of Ω(n log n) comparison operations.[2]
A Non-Comparison based sorting algorithm on the 
other hand does not use comparisons to sort a list and is 
thus not bound by any lower limit. Most popular sorts 
include radix sort , counting sort and bucket sort.

Efficient sorting techniques (in terms of processing time) 
are necessary when we have to sort large number of 
data. Extensive research works are being conducted to 
find
out better techniques.

In  this paper we sort the elements by using an array of 
arbitrary size ranging from number of elements to the 
maximum element.
Let number of elements be 'n' and the maximum 
element in the list be 'm'.
Then-

n<=size-1<=m (for m>n)    ...(a)

size-1=m(for m<=n)

(a) will later be changed to-

size=√
This is done to keep the time complexity optimum. More 
insights about this are in later sections. 
For m<=n, this sorting algorithm behaves exactly like 
counting sort and hence only the case where m>n will
be explained throughout this paper.

A variable 'ratio' is declared which is the number of 
times the input array will have to be traversed. In the 
first pass the elements in the range from '0' to 'size-1' are 
marked by raising the counter in the arbitrary array "Y"
at the same position as the value of that element. This is 
also called counting sort with the difference that 
counting sort uses an array of size 'm' where 'm' is the 
maximum element and does the job in a single pass. 
After the marking phase we traverse the array Y for 
values other than 0 and write them in some "X" array. 
Similarly second pass takes place where we mark the 
elements from 'size' to '2*size-1' and again traverse Y
and write the non-zero valued array elements in X. Then 
the same happens from '2*size' to '3*size-1'.This happens 
till we have put every element in X. Now we have a 
sorted list in X.
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COUNTING SORT

Counting sort is an algorithm for sorting a collection of 
objects according to keys that are small integers; that is, it is 
an integer sorting algorithm. It operates by counting the 
number of objects that have each distinct key value, and 
using arithmetic on those counts to determine the positions 
of each key value in the output sequence. Its running time 
is linear in the number of items and the difference between 
the maximum and minimum key values, so it is only 
suitable for direct use in situations where the variation in 
keys is not significantly greater than the number of items. 
However, it is often used as a subroutine in another sorting 
algorithm, radix sort, that can handle larger keys more 
efficiently.[3][4][5][6]

Because counting sort uses key values as indexes into an 
array, it is not a comparison sort, and the Ω(n log n) lower 
bound for comparison sorting does not apply to 
it.[1] Bucket sort may be used for many of the same tasks as 
counting sort, with a similar time analysis; however, 
compared to counting sort, bucket sort requires linked 
lists, dynamic arrays or a large amount of preallocated 
memory to hold the sets of items within each bucket, 
whereas counting sort instead stores a single number (the 
count of items) per bucket.

EXAMPLE

12 18 13 6 8 4 9

Here n=7,m=18

This algorithm takes an array of size m+1.

Index 0 1 2 3 4 5 6 7 8 9

Freq 0 0 0 0 1 0 1 0 1 1

Index 10 11 12 13 14 15 16 17 18

Freq 0 0 1 1 0 0 0 0 1

Then we display the non zero frequency elements

PROPOSED ALGORITHM

This is a new algorithm which uses bucket sort, counting 
sort and a bit of mathematics to sort elements efficiently.

Here-

∑ arr[] is the input array

∑ n is the number of elements

∑ m is the maximum element in the array

∑ sp is used only when there is a memory constraint 
otherwise it uses default value.

∑ size is the geometric mean of m and n if m>n else it 
is m+1.

∑ up(upper limit) and low(lower limit) define the 
range in which elements will be looked for.

∑ temp[size] is the arbitrary array used in every pass 
and ans[length] is the array used to store the final 
sorted list.

∑ change is a boolean variable which remains
false if no number from the input array was put 
in the temp array.

∑ ratio remains constant .

int* sorting (int arr[],int n,int m,int sp=-1)
{

if(sp!=-1&&sp< sqrt(n*m)&&sp>n)
size=sp;

else if(m<=n)
size=m+1;

else 
size=sqrt(n*m);

int temp[size],ans[n];
int up=size,low=0,counter=0,ratio;

bool change=false;

ratio=ceiling((float)(m-1)/size);

for(int i=0;i<size;i++)
temp[i]=0;

for( a=0;a<ratio;a++)
{

for(int i=0; i<n; i++)
if(arr[i]<up&&arr[i]>=low)

{
temp[arr[i]%size]++;
change=true;

}

up+=size,low+=size;

if(!change)continue;
else change=false;

for(int i=0; i<size; i++)
if(temp[i]!=0)

while(temp[i]!=0)
{

ans[counter++]=a*size+i;
temp[i]--;

}
}
return ans;

192

IJSER © 2013 
http://www.ijser.org 

IJSER

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Sorting_algorithm
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Integer_sorting
http://en.wikipedia.org/wiki/Radix_sort
http://en.wikipedia.org/wiki/Counting_sort#cite_note-clrs-1
http://en.wikipedia.org/wiki/Counting_sort#cite_note-clrs-1
http://en.wikipedia.org/wiki/Counting_sort#cite_note-sedgewick-3
http://en.wikipedia.org/wiki/Comparison_sort
http://en.wikipedia.org/wiki/Big_O_notation#Family_of_Bachmann.E2.80.93Landau_notations
http://en.wikipedia.org/wiki/Lower_bound
http://en.wikipedia.org/wiki/Lower_bound
http://en.wikipedia.org/wiki/Counting_sort#cite_note-clrs-1
http://en.wikipedia.org/wiki/Bucket_sort
http://en.wikipedia.org/wiki/Linked_list
http://en.wikipedia.org/wiki/Linked_list
http://en.wikipedia.org/wiki/Dynamic_array


International Journal of Scientific & Engineering Research, Volume 4, Issue ƚȮɯ)ÜÓàɯ 2013                                      
ISSN 2229-5518

EXAMPLE

Let the array be arr[]:

11 14 7 2 14

12 7 13 5 7

Here n=10 ,  m=14

Now since m>n
size= loor(√m ∗ n)
size=11

ratio= ceiling((float)(m-1)/size)
ratio=2
This determines the number of passes.

Initialize temp[size] with 0 for all elements

First Pass-

We check for elements from 0 to size-1
and increment temp[arr[i]%size]

temp[] becomes as follows:

Index 0 1 2 3 4 5 6 7 8 9 10
Freq 0 0 1 0 0 1 0 3 0 0 0

Freq=Frequency

Since there is atleast one element which has been inserted 
in temp[] , the value of change will be true.

Now we traverse temp[] and for every non-zero frequency  
we write the elements in ans[] according to their 
frequencies.

ans[] becomes as follows:

Index 0 1 2 3 4
Element 2 5 7 7 7

Now we increment up and low by size.
up+=size
low+=size

Second Pass-

We check for elements from size to 2*size-1
and increment temp[arr[i]%size]

temp[] becomes as follows:

Index 0 1 2 3 4 5 6 7 8 9 10
Freq 1 1 1 2 0 0 0 0 0 0 0

Freq=Frequency

Since there is atleast one element which has been inserted 
in temp[] , the value of change will be true.

Now we traverse temp[] and for every non-zero frequency  
we write the elements in ans[] according to their 
frequencies.

ans[] becomes as follows:

Index 0 1 2 3 4 5 6 7 8 9
Element 2 5 7 7 7 11 12 13 14 14

This is our sorted list.

COMPLEXITY ANALYSIS

The time complexity of this algorithm in it's worst case is-

O(size + ratio*n + ratio*size + n)

Simplifying further,we get

O(size+ ( ∗ )
+ m + n)

Since m and n cannot be changed for an input we can 
optimise the complexity by minimising the term :

size+ ( ∗ )

This term is minimised by taking the value of size equal to 
the geometric mean of m and n.

√ ∗ + ( ∗ )
√ ∗

or
2∗ √ ∗

Hence the time complexity becomes:
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O(m+n+2*√ ∗ )
or

O((√ +√ )2)

Since √m ∗ n will be less than m when m>n , we can 
replace it by m and change the complexity to :

O(m+n)

Now we know that the time complexity reaches 
optimum  level at √m ∗ n , so size-1 does not need to 
have a value more than it.

n<=size-1<√ ∗
The best case of this algorithm is when m<=n.
Hence we can replace m by n.
The complexity becomes :

� (m+n)
or

� (n+n)
or

� (n)

The space complexity of this algorithm is O(n+√m ∗ n) 
because of the two arrays used.One of size √m ∗ n and the 
other of size n.

SPACE-TIME TRADEOFF

This algorithm has a big advantage over other sorting 
algorithms. In situations where memory is a constraint and 
enough memory is not available for this algorithm to make 
an array of size (√m ∗ n ) ,then this algorithm can  take an 
arbitrary value of size that can be chosen  in the range from 
n to √m ∗ n.

n≤size-1≤√m ∗ n
This value will solely depend on the available amount of 

memory. The time complexity gets better as we move from 
n to √m ∗ n and starts getting worse as we move from √m ∗ n to m. Thus the maximum and optimum value of size 
has been set to √m ∗ n .The advantage is that the time 
complexity remains almost identical even if size=n+1 which 
is the minimum possible value for size.

O(size+ ( ∗ )
+  m + n)

will become O(n+m+m+n)

or

O(m+n)

This is equal to the time complexity when size=√m ∗ n.

The difference is that now the exact time complexity is 
actually O(2*m+2*n) and earlier it was O(m+n+2√m ∗ n).
Though it slightly loses speed but it definetely saves 
space.

Counting sort and Bucket sort will fail and won't be able 
to execute if memory is a constraint as they all need a 
fixed amount of memory which cannot be reduced but 
this algorithm can still sort correctly by a simple space-
time tradeoff.

COMPARISON ANALYSIS

In this section , the algorithm is compared to the already 
existing sorting algorithms. It is done in two parts.

First it is compared with all the popular 

Comparison based sorting algorithms and then it is 
compared with the non-comparison based sorting 
algorithms.

The algorithms used are-

1. Comparison Based

∑ Bubble Sort
∑ Selection Sort
∑ Insertion Sort
∑ Quick Sort
∑ Merge Sort

2. Non-Comparison Based
∑ Counting Sort
∑ Generic Bucket Sort
∑ Radix Sort

Standard Implementations of these algorithms are 
used.They may not be the most efficient implentation of 
these algorithms.
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As we can see from the tables and graph on the next 
page, when m=n or rather m<=n then Geo Mean sort 
does the sorting in the least time as compared to all 
other sorting algorithms which are compared.Counting 
Sort also does it in the same time but when the value of 
m gets high, the algorithm fails whereas Geo Mean Sort 
still sorts by sacrificing it's optimum speed to save 
space.Radix Sort is slower when m<=n but gets 

considerably faster as compared to Geo Mean when the 
value of m is raised.

A graph has been plotted for m=n, between Quick 
sort,Merge sort,Radix sort and Geo Mean sort.It shows 
that Geo Mean is the fastest in this case.

Sort
n

Bubble
m=n

Selection
m=n

Insertion
m=n

Merge
m=n

Quick
m=n

Geo 
Mean
m=n

100 4 4 4 4 4 4
1000 7 6 5 4 4 4
5000 80 35 22 5 5 4
10000 321 128 73 6 6 4
50000 8120 2908 1600 15 13 6
100000 33649 11556 6380 27 23 7
150000 ** 26211 14304 40 33 9
200000 ** 46410 25481 52 46 11*
250000 ** ** 39714 65 55 20*

Sort
n

Counting Generic Bucket Sort Radix Geo Mean
m=n m=n*

10^3
m=n m=n*10^3 m=n m=n*

10^3
m=n m=n*10^3

100 4 4 4 4 4 4 4 4
1000 4 - 4 - 4 4 4 4
5000 4 - 22 - 4 4 4 5
10000 4 - 72 - 5 5 4 7
50000 6 - 1608 - 11 11 6 25*
100000 7 - 6308 - 19 19 7 95*
150000 9 - 1427

1
- 27 28 9 281*

200000 - - - - 32 33 11* 871*

The tables represent the time taken by sorting 
algorithms (in milli seconds) for different values of n.
n=number of elements m=maximum element
*   signifies that optimum required memory could not be 
allocated and the algorithm had to sacrifice speed to 
make up for lesser memory
** signifies that algorithm required   > 1 min to finish.
- signifies that required memory could not be allocated 
and hence the algorithm did not execute.

For m=n,the graph between number of elements and 
time taken in milli seconds is as follows:
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CONCLUSION

Hence we can conclude that for m<=n this sorting 
algorithm is better than every sorting algorithm tested 
which include  the fastest comparison based sortings 
like merge sort and quick sort and also all the popular 
non-comparison based sorting algorithms like radix sort 
and counting sort.

When the value of m is too high as compared  to n , even 
then this algorithm can sort the elements quickly by 
using the geometric mean of m and n as the size of the 
array. It can also work in cases where memory is a 
constraint as it can sacrifice speed for memory.Overall it 
can be widely used for sorting data and replace many 
existing sorting algorithms in various situations. 
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