
International Journal of Scientific & Engineering Research, Volume 4, Issue ƚ,)ÜÓà 2013
ISSN 2229-5518

Geo-Mean Sort
Safal Pandita

Abstract

Sorting is an algorithm used to arrange all elements of a list in an order. It can be arranged in increasing as well as decreasing order. Several sorting
algorithms with various time and space complexities exist already due to the very important applications of sorting .

This paper proposes an algorithm which is a modification of counting sort and bucket sort to produce a new stable sorting algorithm having better space
complexity than counting sort without affecting it's time complexity and better worst case time complexity than generic bucket sort. It also has better time
complexity than any comparison based sorting algorithm as it is not bound by O(n*log(n)) .It's best case complexity is O(n) whereas worst case
complexity is O(m+n). The space complexity is (√mn + n). Hence it is concluded from experimental and theoretical observations that this algorithm can

replace counting sort and is also better than the generic bucket sort implementation .

Key Words: Algorithm, Counting Sort, Bucket Sort, Non-Comparison Sorting, Rapid Sort, Stable Sort

—————————— u ——————————

INTRODUCTION

A comparison sort is a type of sorting algorithm that
only reads the list elements through a single abstract
comparison operation (often a "less than or equal to"
operator) that determines which of two elements should
occur first in the final sorted list. [1]

There are fundamental limits on the performance of
comparison sorts. A comparison sort must have a lower
bound of Ω(n log n) comparison operations.[2]
A Non-Comparison based sorting algorithm on the
other hand does not use comparisons to sort a list and is
thus not bound by any lower limit. Most popular sorts
include radix sort , counting sort and bucket sort.

Efficient sorting techniques (in terms of processing time)
are necessary when we have to sort large number of
data. Extensive research works are being conducted to
find
out better techniques.

In this paper we sort the elements by using an array of
arbitrary size ranging from number of elements to the
maximum element.
Let number of elements be 'n' and the maximum
element in the list be 'm'.
Then-

n<=size-1<=m (for m>n) ...(a)

size-1=m(for m<=n)

(a) will later be changed to-

size=√
This is done to keep the time complexity optimum. More
insights about this are in later sections.
For m<=n, this sorting algorithm behaves exactly like
counting sort and hence only the case where m>n will
be explained throughout this paper.

A variable 'ratio' is declared which is the number of
times the input array will have to be traversed. In the
first pass the elements in the range from '0' to 'size-1' are
marked by raising the counter in the arbitrary array "Y"
at the same position as the value of that element. This is
also called counting sort with the difference that
counting sort uses an array of size 'm' where 'm' is the
maximum element and does the job in a single pass.
After the marking phase we traverse the array Y for
values other than 0 and write them in some "X" array.
Similarly second pass takes place where we mark the
elements from 'size' to '2*size-1' and again traverse Y
and write the non-zero valued array elements in X. Then
the same happens from '2*size' to '3*size-1'.This happens
till we have put every element in X. Now we have a
sorted list in X.

————————————————

∑ Safal Pandita is currently pursuing a bachelor's degree in Computer
Science in Maharaja Surajmal Institute of Technology in IP University .
E-mail : safalpandita@gmail.com

191

IJSER © 2013
http://www.ijser.org

IJSER

International Journal of Scientific & Engineering Research, Volume 4, Issue ƚȮɯ)ÜÓàɯ 2013
ISSN 2229-5518

COUNTING SORT

Counting sort is an algorithm for sorting a collection of
objects according to keys that are small integers; that is, it is
an integer sorting algorithm. It operates by counting the
number of objects that have each distinct key value, and
using arithmetic on those counts to determine the positions
of each key value in the output sequence. Its running time
is linear in the number of items and the difference between
the maximum and minimum key values, so it is only
suitable for direct use in situations where the variation in
keys is not significantly greater than the number of items.
However, it is often used as a subroutine in another sorting
algorithm, radix sort, that can handle larger keys more
efficiently.[3][4][5][6]

Because counting sort uses key values as indexes into an
array, it is not a comparison sort, and the Ω(n log n) lower
bound for comparison sorting does not apply to
it.[1] Bucket sort may be used for many of the same tasks as
counting sort, with a similar time analysis; however,
compared to counting sort, bucket sort requires linked
lists, dynamic arrays or a large amount of preallocated
memory to hold the sets of items within each bucket,
whereas counting sort instead stores a single number (the
count of items) per bucket.

EXAMPLE

12 18 13 6 8 4 9

Here n=7,m=18

This algorithm takes an array of size m+1.

Index 0 1 2 3 4 5 6 7 8 9

Freq 0 0 0 0 1 0 1 0 1 1

Index 10 11 12 13 14 15 16 17 18

Freq 0 0 1 1 0 0 0 0 1

Then we display the non zero frequency elements

PROPOSED ALGORITHM

This is a new algorithm which uses bucket sort, counting
sort and a bit of mathematics to sort elements efficiently.

Here-

∑ arr[] is the input array

∑ n is the number of elements

∑ m is the maximum element in the array

∑ sp is used only when there is a memory constraint
otherwise it uses default value.

∑ size is the geometric mean of m and n if m>n else it
is m+1.

∑ up(upper limit) and low(lower limit) define the
range in which elements will be looked for.

∑ temp[size] is the arbitrary array used in every pass
and ans[length] is the array used to store the final
sorted list.

∑ change is a boolean variable which remains
false if no number from the input array was put
in the temp array.

∑ ratio remains constant .

int* sorting (int arr[],int n,int m,int sp=-1)
{

if(sp!=-1&&sp< sqrt(n*m)&&sp>n)
size=sp;

else if(m<=n)
size=m+1;

else
size=sqrt(n*m);

int temp[size],ans[n];
int up=size,low=0,counter=0,ratio;

bool change=false;

ratio=ceiling((float)(m-1)/size);

for(int i=0;i<size;i++)
temp[i]=0;

for(a=0;a<ratio;a++)
{

for(int i=0; i<n; i++)
if(arr[i]<up&&arr[i]>=low)

{
temp[arr[i]%size]++;
change=true;

}

up+=size,low+=size;

if(!change)continue;
else change=false;

for(int i=0; i<size; i++)
if(temp[i]!=0)

while(temp[i]!=0)
{

ans[counter++]=a*size+i;
temp[i]--;

}
}
return ans;

192

IJSER © 2013
http://www.ijser.org

IJSER

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Sorting_algorithm
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Integer_sorting
http://en.wikipedia.org/wiki/Radix_sort
http://en.wikipedia.org/wiki/Counting_sort#cite_note-clrs-1
http://en.wikipedia.org/wiki/Counting_sort#cite_note-clrs-1
http://en.wikipedia.org/wiki/Counting_sort#cite_note-sedgewick-3
http://en.wikipedia.org/wiki/Comparison_sort
http://en.wikipedia.org/wiki/Big_O_notation#Family_of_Bachmann.E2.80.93Landau_notations
http://en.wikipedia.org/wiki/Lower_bound
http://en.wikipedia.org/wiki/Lower_bound
http://en.wikipedia.org/wiki/Counting_sort#cite_note-clrs-1
http://en.wikipedia.org/wiki/Bucket_sort
http://en.wikipedia.org/wiki/Linked_list
http://en.wikipedia.org/wiki/Linked_list
http://en.wikipedia.org/wiki/Dynamic_array

International Journal of Scientific & Engineering Research, Volume 4, Issue ƚȮɯ)ÜÓàɯ 2013
ISSN 2229-5518

EXAMPLE

Let the array be arr[]:

11 14 7 2 14

12 7 13 5 7

Here n=10 , m=14

Now since m>n
size= loor(√m ∗ n)
size=11

ratio= ceiling((float)(m-1)/size)
ratio=2
This determines the number of passes.

Initialize temp[size] with 0 for all elements

First Pass-

We check for elements from 0 to size-1
and increment temp[arr[i]%size]

temp[] becomes as follows:

Index 0 1 2 3 4 5 6 7 8 9 10
Freq 0 0 1 0 0 1 0 3 0 0 0

Freq=Frequency

Since there is atleast one element which has been inserted
in temp[] , the value of change will be true.

Now we traverse temp[] and for every non-zero frequency
we write the elements in ans[] according to their
frequencies.

ans[] becomes as follows:

Index 0 1 2 3 4
Element 2 5 7 7 7

Now we increment up and low by size.
up+=size
low+=size

Second Pass-

We check for elements from size to 2*size-1
and increment temp[arr[i]%size]

temp[] becomes as follows:

Index 0 1 2 3 4 5 6 7 8 9 10
Freq 1 1 1 2 0 0 0 0 0 0 0

Freq=Frequency

Since there is atleast one element which has been inserted
in temp[] , the value of change will be true.

Now we traverse temp[] and for every non-zero frequency
we write the elements in ans[] according to their
frequencies.

ans[] becomes as follows:

Index 0 1 2 3 4 5 6 7 8 9
Element 2 5 7 7 7 11 12 13 14 14

This is our sorted list.

COMPLEXITY ANALYSIS

The time complexity of this algorithm in it's worst case is-

O(size + ratio*n + ratio*size + n)

Simplifying further,we get

O(size+ (∗)
+ m + n)

Since m and n cannot be changed for an input we can
optimise the complexity by minimising the term :

size+ (∗)

This term is minimised by taking the value of size equal to
the geometric mean of m and n.

√ ∗ + (∗)
√ ∗

or
2∗ √ ∗

Hence the time complexity becomes:

193

IJSER © 2013
http://www.ijser.org

IJSER

International Journal of Scientific & Engineering Research, Volume 4, Issue ƚȮɯ)ÜÓàɯ 2013
ISSN 2229-5518

O(m+n+2*√ ∗)
or

O((√ +√)2)

Since √m ∗ n will be less than m when m>n , we can
replace it by m and change the complexity to :

O(m+n)

Now we know that the time complexity reaches
optimum level at √m ∗ n , so size-1 does not need to
have a value more than it.

n<=size-1<√ ∗
The best case of this algorithm is when m<=n.
Hence we can replace m by n.
The complexity becomes :

� (m+n)
or

� (n+n)
or

� (n)

The space complexity of this algorithm is O(n+√m ∗ n)
because of the two arrays used.One of size √m ∗ n and the
other of size n.

SPACE-TIME TRADEOFF

This algorithm has a big advantage over other sorting
algorithms. In situations where memory is a constraint and
enough memory is not available for this algorithm to make
an array of size (√m ∗ n) ,then this algorithm can take an
arbitrary value of size that can be chosen in the range from
n to √m ∗ n.

n≤size-1≤√m ∗ n
This value will solely depend on the available amount of

memory. The time complexity gets better as we move from
n to √m ∗ n and starts getting worse as we move from √m ∗ n to m. Thus the maximum and optimum value of size
has been set to √m ∗ n .The advantage is that the time
complexity remains almost identical even if size=n+1 which
is the minimum possible value for size.

O(size+ (∗)
+ m + n)

will become O(n+m+m+n)

or

O(m+n)

This is equal to the time complexity when size=√m ∗ n.

The difference is that now the exact time complexity is
actually O(2*m+2*n) and earlier it was O(m+n+2√m ∗ n).
Though it slightly loses speed but it definetely saves
space.

Counting sort and Bucket sort will fail and won't be able
to execute if memory is a constraint as they all need a
fixed amount of memory which cannot be reduced but
this algorithm can still sort correctly by a simple space-
time tradeoff.

COMPARISON ANALYSIS

In this section , the algorithm is compared to the already
existing sorting algorithms. It is done in two parts.

First it is compared with all the popular

Comparison based sorting algorithms and then it is
compared with the non-comparison based sorting
algorithms.

The algorithms used are-

1. Comparison Based

∑ Bubble Sort
∑ Selection Sort
∑ Insertion Sort
∑ Quick Sort
∑ Merge Sort

2. Non-Comparison Based
∑ Counting Sort
∑ Generic Bucket Sort
∑ Radix Sort

Standard Implementations of these algorithms are
used.They may not be the most efficient implentation of
these algorithms.

194

IJSER © 2013
http://www.ijser.org

IJSER

International Journal of Scientific & Engineering Research, Volume 4, Issue ƚȮɯ)ÜÓàɯ2013
ISSN 2229-5518

As we can see from the tables and graph on the next
page, when m=n or rather m<=n then Geo Mean sort
does the sorting in the least time as compared to all
other sorting algorithms which are compared.Counting
Sort also does it in the same time but when the value of
m gets high, the algorithm fails whereas Geo Mean Sort
still sorts by sacrificing it's optimum speed to save
space.Radix Sort is slower when m<=n but gets

considerably faster as compared to Geo Mean when the
value of m is raised.

A graph has been plotted for m=n, between Quick
sort,Merge sort,Radix sort and Geo Mean sort.It shows
that Geo Mean is the fastest in this case.

Sort
n

Bubble
m=n

Selection
m=n

Insertion
m=n

Merge
m=n

Quick
m=n

Geo
Mean
m=n

100 4 4 4 4 4 4
1000 7 6 5 4 4 4
5000 80 35 22 5 5 4
10000 321 128 73 6 6 4
50000 8120 2908 1600 15 13 6
100000 33649 11556 6380 27 23 7
150000 ** 26211 14304 40 33 9
200000 ** 46410 25481 52 46 11*
250000 ** ** 39714 65 55 20*

Sort
n

Counting Generic Bucket Sort Radix Geo Mean
m=n m=n*

10^3
m=n m=n*10^3 m=n m=n*

10^3
m=n m=n*10^3

100 4 4 4 4 4 4 4 4
1000 4 - 4 - 4 4 4 4
5000 4 - 22 - 4 4 4 5
10000 4 - 72 - 5 5 4 7
50000 6 - 1608 - 11 11 6 25*
100000 7 - 6308 - 19 19 7 95*
150000 9 - 1427

1
- 27 28 9 281*

200000 - - - - 32 33 11* 871*

The tables represent the time taken by sorting
algorithms (in milli seconds) for different values of n.
n=number of elements m=maximum element
* signifies that optimum required memory could not be
allocated and the algorithm had to sacrifice speed to
make up for lesser memory
** signifies that algorithm required > 1 min to finish.
- signifies that required memory could not be allocated
and hence the algorithm did not execute.

For m=n,the graph between number of elements and
time taken in milli seconds is as follows:

195

IJSER © 2013
http://www.ijser.org

IJSER

International Journal of Scientific & Engineering Research, Volume 4, Issue ƚȮɯ)ÜÓàɯ 2013
ISSN 2229-5518

CONCLUSION

Hence we can conclude that for m<=n this sorting
algorithm is better than every sorting algorithm tested
which include the fastest comparison based sortings
like merge sort and quick sort and also all the popular
non-comparison based sorting algorithms like radix sort
and counting sort.

When the value of m is too high as compared to n , even
then this algorithm can sort the elements quickly by
using the geometric mean of m and n as the size of the
array. It can also work in cases where memory is a
constraint as it can sacrifice speed for memory.Overall it
can be widely used for sorting data and replace many
existing sorting algorithms in various situations.

REFERENCES

1. http://en.wikipedia.org/wiki/Comparison_sort
2.
3. Donald Knuth. The Art of Computer Programming, Volume

3: Sorting and Searching, Second Edition. Addison-Wesley,
1997. ISBN 0-201-89685-0. Section 5.3.1: Minimum-Comparison
Sorting, pp. 180–197.

4.
5. 3. http://en.wikipedia.org/wiki/Counting_sort
6.
7. 4. (Cormen, Thomas H.; Leiserson, Charles E.,

Rivest, Ronald L., Stein,
8.
9. Clifford (2001) [1990]. Introduction to Algorithms [1])
10.

11. 5. Edmonds, Jeff (2008), "5.2 Counting Sort (a Stable
Sort)", How to Think about Algorithms,

Cambridge University Press, pp. 72–75
12.
13. 6. Sedgewick, Robert (2003), "6.10 Key-Indexed

Counting", Algorithms in Java, Parts 1-4:
Fundamentals, Data Structures, Sorting, and
Searching (3rd ed.), Addison-Wesley

0

10

20

30

40

50

60

100 1000 5000 10000 50000 100000 150000 200000

Ti
m

e
(m

ill
 s

ec
on

ds
)

Number of elements

Merge

Quick

Radix

Geo Mean

196

IJSER © 2013
http://www.ijser.org

IJSER

http://en.wikipedia.org/wiki/Donald_Knuth
http://en.wikipedia.org/wiki/Special:BookSources/0201896850
http://en.wikipedia.org/wiki/Robert_Sedgewick_(computer_scientist)

